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PUKANSZKY’S CONDITION
AND SYMPLECTIC INDUCTION

C. DUVAL, J. ELHADAD & G. M. TUYNMAN

Abstract

Pukanszky’s condition is a condition used in obtaining representations
from coadjoint orbits. In order to obtain more geometric insight into
this condition, we relate it to symplectic induction. It turns out to be
equivalent to the condition that the orbit in question is a symplectic
subbundle of a modified cotangent bundle.

1. Introduction

One of the original goals of geometric quantization was to obtain a gen-
eral method of constructing (irreducible) representations of Lie groups out
of their coadjoint orbits. The idea was to generalize the Borel-Weil-Bott
theorem for compact groups and Kirillov’s results for nilpotent groups.
Since then geometric quantization has led a somewhat dual life. On the
one hand, in representation theory where it is called the orbit method (see
[8] for a relatively recent review). On the other hand, in physics where
it serves as a procedure that starts with a symplectic manifold (a classical
theory) and creates a Hilbert space and a representation of the Poisson
algebra as operators on it (the quantum theory).

Recent results in quantum reduction theory [5] allow us to show rig-
orously in some particular cases that geometric quantization intertwines
the procedures of symplectic induction and unitary induction. Since the
latter is one of the ingredients in the orbit method, this gives a geomet-
rical insight into the “classical” part of the orbit method. In particular,
it allows us to give a geometrical interpretation of Pukanszky’s condition
on a polarization which is completely different from the well-known in-
terpretation that says that the coadjoint orbit contains an affine plane. In
fact, we prove (Proposition 3.9) that Pukanszky’s condition is equivalent
to the statement that the coadjoint orbit in question is, in a noncanonical
way, symplectomorphic to a symplectic subbundie of a modified cotan-
gent bundle (where modified means that the canonical symplectic form on
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the cotangent bundle is modified by adding a closed 2-form on the base
space). For real polarizations these results have also been obtained with
completely different methods in [12]. Again for real polarizations we ob-
tain as a corollary that Pukanszky s condition links the two dual lives of
geometric quantization. ‘

This paper is organized as follows. In §2.1 we recall briefly the basics
of symplectic induction, and in §2.2 we show (heuristically) that geomet-
ric quantization intertwines symplectic induction and unitary induction.
Then in §2.3 we prove that unitary induction from a one-dimensional uni-
tary representation of a subgroup is equivalent to geometric quantization
of an induced symplectic manifold. In §3 we use this induced symplectlc
manifold to prove the above-mentioned interpretation of Pukanszky s con-
dition. In §4 we give an example of this interpretation that is particularly
interesting for physics: the fact that the symplectomorphism of the orbit
with modified cotangent bundle is not canonical translates as the fact that
the position of a photon has no intrinsic meaning, i.e., depends heavily
upon the observer. Finally in §5, an appendix, we collect some notation
and conventions used throughout this paper.

2. Symplectic induction and induced representations

2.1. Symplectic induction. Let (M, w) be a symplectic manifold and
let H Vbe a closed Lie subgroup of a connected Lie group . Suppose H
acts smoothly on M by symplectomorphisms and admits an equivariant
momentum map J,,: M — h*, where h denotes the Lie algebra of H .
Symplectic induction ([9], [13], {25]) then constructs in a canonical way
a symplectic manifold (M, ,, @, ) on which G acts smoothly by sym-
plectomorphisms with an equivariant momentum map J 4: M, , — g,
where g is the Lie algebra of G.

To construct M, , one proceeds as follows The group H acts on G
by h:gw— R-1g = gh and we denote by ®;.. the canonical lift of
this action to T"G, equipped with its canonical symplectic form dd, .
We identify 7"°G with G x g* by identifying g* with the left-invariant
1-forms on G . In this trivialization the action of H on TG is given by

@ (h)(g. 1) = (gh™", Coady(h)n).

where we have added the subscript G to stress that it concerns the coad-
joint action with respect to the group G . This action admits a canonically
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defined equivariant momentum map Jy.: TG — h -given by

) JT’G(g> :u) = _l[-]‘ll’f
We denote by ®,, the action of H on M , and we construct an action
@~ of H on M= MxTGbyCI>~—CI> xCDT,G,le

M
CDM(h)(m,g,y) (@) (h)(m), gh~" , Coad(h)u).

This action is symplectic for the symplectic form W= w+ddg; it is
a proper action because H is closed. Moreover, this action admits an
equivariant momentum map Iy = Iy + Jpeg for which 0 € h* is a
regular value. The sought-for 1nduced symplectlc manifold (M, ©,4)
is the Marsden-Weinstein reduced symplectic manifold : ~

M .= J (O)/H.

To obtain the hamlltoman action of G on M, , we make the fol-
lowing observations. The group G acts naturally on itself on the left;
the canonical lift of this action to T"G is hamiltonian and given by
g:(&,n)— (g8, u). Welet G act trivially on M to obtain a hamilto-
man actlon of G on M with the canonical equivariant momentum map
J: M — g" given by ;

(2.1) J(m, g, u) = Coady(g)p

This action commutes with the H-action on M and leaves J fr invariant;

hence it induces a symplectic action of G on M, ;. Since J is invariant
under the H-action, it descends as an equivariant momentum map for the
G-action on. M, , which we denote by J, ;. This finishes the construction
of the induced symplectic manifold. The following proposition describes
the relation between (M, ,, @, ), (M, w), G,and H it isa special case
of a result of A. Weinstein [24]. ‘

Proposition 2.2. M, , is a fiber bundle over T"(G/H) with typical fiber
M . Moreover, restriction of w, . to a fiber yields the original symplectic
form w on M. : «

Proof. Let a be a connection on the principal H-bundle G — G/H ,
ie.; a is a h-valued I-form on G satisfying:

\-/Xeh\-/geG:ag(X):X, ; ; ‘
Vhe HVY € T,G: (Ry-10),(Y) = Ady(h)(a,(Y)),

ind

where we interpret elements of h C g as left-invariant vector fields on G.
Restricting our attention to left-invariant vector fields, we can inteipret a,
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as a projection « g 98— b;by dualization we obtain a family of injections
{a;: b* — g*|g € G} satisfying z; oa; = id,. . Going to cotangent bundles,
we consider the canonical projections pr: T"G=Gxg" — G, n: G —
G/H, and pt: T*(G/H) — G/H . It is easy to verify that pr: Jr.(0) =
G x l‘)o — G is the pull-back bundle of the bundle T*(G/H) — G/H over
the map 7, where the projection JT_)G(O) — T*(G/H) is just !
— " ~ 0

We now note that J='(0) = {(m, g, W)l (m) = ;u} = M x G xb°,

and we define a map P: JZ'(0) - G x b° by

P(m, g, n) = (g, b—a,(J(m).

The kernel of this map is obviously diffeomorphic to M , and the defining
properties of a connection show that it is equivariant for the H-actions.

. Y -1 — ~ T*
Hence P induces a map P: Jy (0)/H = M, ; — J;.;(0)/H = T"(G/H)
whose fiber is diffeomorphic to M . We thus obtain the following commu-
tative diagram:

JAT}I(O) £, exy® 2, G

(2.3) lmodH l"'_’ ln

M, , T T"(G/H) —I_;—> G/H.
This proves the first assertion of the proposition; the second is left to the
reader.

2.2. Geometric quantization and induced representations. To forge the
link between symplectic induction and induced representations, we make
two additional assumptions. In the first place we assume that H is con-
nected, and in the second place we assume that geometric quantization
applied to the quadruple (M, w, H, J,,) yields a unitary representation
U,, of the Lie group H on the Hilbert space #;,. Of course this re-
quires additional data such as a polarization #,, on (M, w), but we will
not specify these explicitly.. The aim now is to apply geometric quantiza-
tion to the quadruple (M, ,, w, 4, G, J,4) in order to obtain a unitary
representation of G.

__We start by applying geometric quantization to the symplectic manifold
(M, @). We equip 7" G with the vertical polarization .%, and define on

M the composite polarization F = Fy ®F, . It is an elementary exercise
in geometric quantization to prove that the Hilbert space -# obtained by
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quantization of (]\7 , (0) with this polarization can be described as

~

%:{qu—»Z/M

[wi@). vien ds < oo} ,

where (-, -) denotes the scalar product in #;,,and dg denotes a nowhere
vanishing volume form on G. For convenience we will now make the
choice that dg is a left-invariant volume form (which is unique up to a
nonzero real factor). When one then quantizes the action of G on M ,
one obtains the unitary representation U of G on 7 given by

(2.4) (U(g)w)(k) = w(g k).

Note that this nice description is due to our particular choice of the volume
dg on G.

__The next step is to implement the Marsden-Weinstein reduction from
M to M, , by means of the group H . Although no proof is known, partial
results obtained in [5], [6], [7], [9], and [21] all indicate that the following
conjecture is true, a conjecture which describes the Hilbert space #, ;
obtained by applying geometric quantization to the reduced symplectic
manifold M,y = J;'(0)/H .

Conjecture 2.5.

H,y = {w € Z\vh e H:Ug(h)y = Det(Ad, ()"

w}.

In this conjecture U i is the unitary representation of H on # ob-
tained by geometric quantization; note that the adjoint representation is
with respect to the reducing group H . Of course this equivalen,cve has to
be read with caution because (i) in general one has to enlarge # before
there are elements satisfying the condition of the right-hand side and (ii)
one then has to restrict to elements that are sqqgre-integrable with respect
to a measure that is not specified in terms of # .

" The representation U fr is readily calculated as being given by

(U (h)w)(g) = Det(Adg (1) ™2 Uy, (h)w(gh).

The factor Det(AdG(h))_l/ 2 is due to the fact that the left-invariant vol-
ume form dg on G is not invariant under the right-action of H, but
transforms with Det(Ad;(h)). Combining this with the conjecture, we
find the following description of #Z _:

ind *

(2.6) Hy={w:G—HNheH:y(gh ) =y(h) Uy hw(g)},
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where we have defined the function y on H by

Det(Ad,, (4))

The scalar product on # ; can be described intrinsically by the fol-
lowing procedure (sketched). For y, x € #, , we construct the volume
form dV = {(y(g), x(g))dg on G. We then contract this volume form
with the generators of the right-action of H on G to obtain a form a on
G . Due to the defining property of % ,, this form is closed and hence is
the pull-back of a volume form dV on the quotient G/H . Integration of
this volume form over G/H then gives the scalar product (¥, x),,4 on
#,4- We can find the usual description directly in terms of the functions
w and yx if we introduce an auxiliary function p on G which is strictly

positive and satisfies:

Vhe H: p(gh) = y(h) -p(g)-

We denote by du the volume form on G/H obtained from the volume
form dV = p(g)dg on G by the procedure described above With these
preparations we have

where we note that the quotient under the integral sign is a function on
G/H , again due to the definition of /. Finally we note that a different
choice for the generators of the nght-actron of H on G changes the scalar
product on /7 by a constant factor.

After the descrlptlon of Z 4 as quantum Hilbert space of (M, 0p4)
we have to determine the representation of G on % d associated to the
hamiltonian action of G on M, . With reference to the same partial re-

sults as for ConJecture 2.5 and usmg that J . is obtained from the (glob-

ally) H-invariant momentum map J (formula (2.1)) one “deduces” that
this representatlon is just the restrlctron of the representatlon (formula
(2.4)) of G on Z restricted to Zd . If we compare this representation
of G (formulas (2.4), (2.6), and (2._8)) with the standard description of
the induced representation of G, induced from the unitary representation
U,, of H on #,, ([8], [16], [23]), then we see that they are the same. In
other words, geometric quantization intertwines the constructions “sym-
plectic induction” and “induced representations,” of course modulo the
fact that Conjecture 2.5 is still open in the general case.
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2.3. A particular case. We now consider the particular example of
symplectic induction in which the original symplectic manifold is a single
point. This example will play an important role in our interpretation of
Pukanszky’s condition. Although it might seem to be singular, the con-
structions all make sense. Since the action of H on M = {pt} is trivial,
a momentum map J,, for this action has a single value v, € h*. The
condition that J,, is equivariant is equivalent to the condition that v, is
invariant under the coadjoint action of H on §*:

J equivariant « v, Coad -invariant.

We continue with the symplectic manifold (H , @)={pt}xT"G, db).
The momentum map J,.: M — b is given by

(2.9) Juot, &, 1) =vy+ Jpe(8, 1) = vy — Z;/.L.

It follows that the constraint set J AZII(O) is given by

-1 -1

(2.10) Jy; (0)= {pt} x Jpeg(=vp) .
We thus see that if we drop the (now superfluous) reference to the point
pt, we just have to reduce the canonical action of H on T°G at v,, i.e.,

Mipg = Jr(~vo) [ H .

We now invoke the Sternberg-Satzer-Marsden-Kummer reduction the-
orem ([20], [18], [1], [15]) to describe this reduced manifold. With a a
connection on G — G/H as in the proof of Proposition 2.2, we define
the 1-form @, =Vyoa on G . Using that o is a connection and that v,
is invariant, it is elementary to show the existence of a closed 2-form £
on G/H such that a’au0 = 7" B . Careful inspection of diagram (2.3) then
proves the next proposition.

Proposition 2.11.  P: (M, 4, oy) — (T"(G/H), d0;,, + DT B) isa
symplectomorphism.

We call a cotangent bundle 7°Q in which the canonical symplectic
form dl9Q is modified with the pull-back of a closed 2-form £ on Q
a modified cotangent bundle (note that dl9Q +Ppr B is always symplec-
tic). Thus Proposition 2.11 states that A , is symplectomorphic to the
modified cotangent bundle 7"(G/H). Note however that this symplec-
tomorphism depends upon the choice of the connection « and hence is
not canonical in the general case. The induced action of G on T*(G/H)
can be described as the unique action that covers the canonical left-action
of G on G/H and that is symplectic with respect to the symplectic form
dl‘)G/H +pr B (see also [3]).
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Next we tackle the question of quantization and we start with (M, @) =
({pt}, 0). The Hilbert space #,, consists of sections of a complex line
bundle over a point, i.e.,

#,=C.

Geometric quantization of the momentum map J,, yields the infinitesi-
mal representation 7: h — End(#,,) given by v

(&) = i-v,(&) € C = End(C).

The assumption that geometric quantization of (A, w) yields a unitary
representation translates in this context as the assumption that this algebra
representation T can be integrated to a group representation y: H —
U(1) € End(C). In other words, we assume that i-v, is the derivative
(at the identity) of a character y of H . By abuse of language we will say
that v, € h” is the infinitesimal form of the character y .

It turns out that the assumptions we have made so far allow us to apply
the results obtained in [7] and [5], results which tell us that in this particular
case Conjecture 2.5 is true. We note in particular that the assumption that
v, is the infinitesimal form of a character x is equivalent to the condition
in [7] and [5] that the H-action lifts to a connection-preserving action on
the prequantum bundle above (TG, dd;). We thus have proven the
following proposition.

Proposition 2.12. Let y be a character of H, a closed and connected
Lie subgroup of a connected Lie group G . Denote by v, € bh* its infinitesi-
mal form and by U the unitary representation of G obtained by induction
from y. Then we have:

(i) x is obtained by geometric quantization of the quadruple (M , w,
H,J,,)=({pt},0,H, vy), and

(i) U is obtained by geometric quantization (using the vertical po-
larization) of the quadruple (M, 4, @, 4, G, J,,4) = (T"(G/H), dgy +
pr g, G, Jnq) Which is obtained by symplectic induction from the quadru-
ple ({pt}, 0, H, v,).

Remark 2.13. Without additional hypotheses the above proposition is
true for geometric quantization using half-densities; for half-forms quan-
tization additional conditions concerning metalinear structures are neces-
sary [7]. If H is not connected, Proposition 2.11 remains true; Propo-
sition 2.12 also remains true with half-density quantization, provided we
add absolute values under the square root sign in (2.7).
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3. Pukanszky’s condition and the structure of coadjoint orbits

3.1. Polarizations and Pukanszky’s condition. For the remainder of this
paper we fix a connected Lie group G and an element x4, € g" . To make
notation less cumbersome, we denote the coadjoint action of G on g* by
a simple dot, i.e., for g€ G and u € g* we have g-u = Coad q(&u. We
define G C G as the isotropy subgroup of p, with Lie algebra g, C9>
and we denote by ﬁ =G-py = G/G 1y the coadjoint orbit of /‘0 in

g" . We denote by g the complexification gc = g @ ig of g with its
canonical injection g — gc and complex conjugation ~ : gC — gc; the
adjoint action of G is extended by linearity to gC .

Given a linear subspace a C g containing g 4, WE define the symplectic

orthogonal a®= by
o = {X € glvY €a: uy([X, Y]) =0},

and we extend this notion in the obvious way to subspaces of gC contain-
ing g, +ig, -

Lemma 3.1. gJ‘ =8, C at, (aJ')J' =a, and dima+dima® = dim g+
dimg o

Definition 3.2. A polarization is a complex Lie subalgebra b of gc
containing g s ig o and satisfying:

(i) b is invariant under the Ad-action of G#0 ;

(ii) b* =b;and

(iii) h+75 is a Lie subalgebra of g°.

Remark 3.3. Condition 3.2(ii) is usually given as two separate condi-
tions: (ii-a) dim; h = 2(dlrnR g+dimg g 0) and (ii-b) u,({h, p]) =

Remark 3.4. One can easily show that polarizations as defined above
are in 1-1 correspondence with G-invariant polarizations ¥ on ﬁ#o in
the sense of geometric quantization, the correspondence being given by
coad, (h)u, = Z‘o C (T#O@MO)C. Condition (i) guarantees that ¥ so de-
fined is indeed well defined, (ii) translates to the fact that & is Lagrangian,
and (iii) states that # +.# is involutive.

Remark 3.5. In the special case h = § one says that b is a real po-
larization; at the other extreme h+ b = gC , one calls b a purely complex
polarization.

To any polarization § we can associate two (real) Lie subalgebras 2 C ¢
of g by the relations ? = hng and ¢ = (h+ h)Ng. These Lie subalgebras
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will be fixed throughout the remaining part of this paper. We denote by
DO C E, the connected Lie subgroups of G whose Lie algebras are 9, resp.
. It follows from conditions (i) and (ii) that @ and e are Lie subalgebras
of g containing 8, that are invariant under the Ad-action of G, . We
deduce that the subsets D =D, G CE=E, G are subgroups of G.
We now collect some elementary facts about these objects (e.g., see [14]
or [22]).
Lemma 3.6. (i) o* =
(ii) D, and D are closed Lie subgroups of G with Lie algebra 0.
(iii) 1;u, € 0" is Coad,-invariant.
(iv) & and Uy + ¢ are invariant under the Coad;-action of D.
(v) If E is a Lie subgroup of G then its Lie algebra is .

Lemma 3.7 (Pukanszky’s condition). The following three conditions are
equivalent:

(i) py+ec Guy=0,

(ii) D-py =g+

(iii) D-u, is closed in g*.

Proof. Since Uy + ¢ is invariant under D, it follows that D-u, C
Uy + ¢’. From Lemma 3.1 we deduce that dim(D - uy) = dim(u, + eo)
and thus we conclude that D-py, is open in y,+ ¢’ . Hence we find the
implication (iii) = (ii). Since the implications (ii) = (iii) and (ii) = (i)
are obvious, we only have to prove (i) = (iii).

Therefore assume u € u, + ¢? lies in the closure of D- 4, - As above
we have D-u C u,+ ¢’ and because by hypothesis u € ﬁl‘o we still have

dim(D - p) = dim(y, + eo) . It follows that D-u is also open in 4, + e
and thus D-u intersects D-u,. It then follows immediately from the
existence of g € G with u=g-pu, that p € D-py,.

Remark 3.8. The definition of Pukanszky’s condition as given above
is the one used by M. Vergne [22] in the context of solvable Lie groups;
there are other versions of this condition oriented more toward Lie groups
that may have sem1s1mp1e subgroups One by M. Duflo [4] is that H - u,
should be closed n (g ), and one by B. Kostant [14] is that E - u, should
be closed in g* . In the case of a real polarization all these conditions imply
the original one of Pukanszky [17].

3.2. The structure of coadjoint orbits. We saw in the previous sub-
section that D is a closed subgroup of G and that y, = l; Uy € 0" is
Coad-invariant. We thus can apply symplectic induction from a point as
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explained in §2.3 with D as the closed subgroup H . In this case we have
T=10) 2 Jio(—v) = G x (1, +9°), while the subset sy +¢® C p+2° is
also invariant under the D-action. Hence we can enlarge and simplify the

commutative diagram (2.3) to:

Gx(,u0+e0) _ Gx(,u0+00) ., Gx® =

lmodD lmodD ln"‘l lﬂ

F — M, T) T*(G/D) T > G/D
with F = (G x (g, + eo)) /D . Since we apply symplectic induction from a
point, the maps P and P are diffeomorphisms. Moreover, each D-orbit
intersects {g} x (g, + DO) in a single point and P is affine on it; hence we
can identify F as a subbundle of T*(G/D).

We now restrict the canonical symplectic form dd; of T°G = G x g
to the subspace G x (1, + eo) . We leave it to the reader to verify that the
leaves of the characteristic foliation of this restricted 2-form are exactly
the orbits of D, . It then follows that F can be identified as a symplectic
subbundle of (T"(G/D), db, /D +Pr" B); the induced symplectic form
on F being the restriction of dd;), +pt B to FCT'(G/D).

Since the (left) action of G on T*G obviously preserves G x (o +
zo) , we obtain an induced symplectic action of G on F; its equivariant
momentum map J, is obtained from the momentum map J defined in
(2.1).

Proposition 3.9. The following four conditions on the polarization are
equivalent:

(i) Pukanszky’s condition.
(ii) The momentum map J.: F — g is onto ﬁl‘o'
(iii) The symplectic action of G on F s transitive.
(iv) Ji is a symplectomorphism between (F, w.) and ﬁ%.

Proof. From the definitions of F and J,. we deduce that

. 0
im(Jp)={g-ulgeG, necuy+e}.

In particular, u, € im(J;), and thus (?’#o C im(J;). The equivalence
(i) & (i) now follows immediately from 3.7(i). Since the implications
(iv) = (iii) = (i1) are obvious, it suffices to show the implication (i) =

(iv).
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To that end, consider (g, u), (&, ) € G x (g, + eo) that have the
same image under J,, ie., g-u = gZ-i. From 3. 7(ii) we deduce the
existence of d, d € D such that u=d-py, = d- * Uiy > and hence we
have d_lg_lga? €G, . Since G, C D, it follows that d, = g~ g eD
and thus (g, u) = <I)0T, (dy)(& > ,u) ie., (g, u) and (g, 1) lie in the
same D-orbit. Together with (i) this shows that J, maps F bijectively
to ﬁ . It is then standard to show that it is a symplectomorphism, and
thus we have shown the implication (i) = (iv).

Remark 3.10. If § is a real polarization, the two subalgebras ? and
¢ are the same. In that case Pukanszky’s condition states that ﬁﬂo is iso-

morphic to the (full) modified cotangent bundle 7"(G/D). At the other
extreme when § is purely complex, Pukanszky’s condition is always satis-
fied and the above proposition reduces to the rather trivial statement that
ﬁl‘o is symplectomorphic to the zero section of the modified cotangent

bundle T é’

Remark 3. 11 If G is an exponential group, the orbit method proceeds
as follows. One assumes the polarization to be real and such that there ex-
ists a global character y of D with dy = iz; 4, - The representation of G
associated to the orbit ﬁ then is the representation obtained by unitary
induction from y. Pukanszky [17] has shown that this representation is
irreducible if and only if the condition that bears his name is satisfied.

However, there is another representation of G we can associate to this
orbit, i.e., the one obtained by geometric quantization (using the given
real polarization). Combining Propositions 2.12 and 3.9 we see that these
two representations of G coincide if Pukanszky’s condition is satisfied.
This last result thus provides an even stronger link between geometric
quantization and the orbit method.

Without additional assumptions not much more can be said about the
geometric implications of Pukanszky’s condition. However, if the sub-
group E of G happens to be closed, we have the following proposition.

Proposition 3.12. If E is a closed subgroup of G, and if Pukanszky’s
condition is satisfied, then there exists a commutative diagram

i
8-

T'(G/D) —— &, Tt 1"(G/E)

| % |
G/D —— G/D —— GJE

with the following properties:
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(i) (i, f) is the identification of é;‘o as a symplectic subbundle of
T"(G/D) according to Proposition 3.9, and

(i) P is a fiber bundle whose fibers, together with the restricted sym-
plectic form, are symplectomorphic to the pseudo-Kdhler space E/D .

Proof. Define p, =1 u, € ¢, and denote by @’po the orbit of p, in ¢"
under the Coadg-action. We compute the isotropy subgroup of p, in E
as follows. e € E lies in the isotropy subgroup of p, iff e-u, — u, € .
According to Pukanszky’s condition this is equivalent to e-u, € D, .
Since Gﬂ0 C D C E we deduce that the isotropy subgroup is D.

We now consider symplectic induction from the subgroup E C G with
M= @’ . From Proposition 2.2 we deduce that M, , fibers over T*(G/E)
with symplectlc fiber @’ =~ E/D. Since one can show (e.g., [14]) that
ﬁ ~ F/D admits a pseudo Kibhler structure, it thus only remains to show
that M, , is symplectomorphic to @’ and that the diagram containing

P, commutes.
To that end we investigate J ;}1 (0), which is given by

—1 * * %
i 0 ={(p. g, mee xGxghu=pecd,}

(note that J,, is the identity map for coadjoint orbits). Now if p € & 2%
then there exists e € E: p =1 (e ;) and thus we find the condition
U—e-u,€ ¢ , or equivalently (using Pukanszky’s condition) u = ed - i,
for some d € D. Since D C E we thus find

IS0 = {( (e 1ty). g, e-m)lg € G, e € E}.

It then follows (with the same techniques as in the proof of 3.9) that

Jgs Mg — é" is a symplectomorphism. The map ?E now is the com-

position of Jind with the map P from Proposition 2.2 for this induction.

Tracing diagram (2.3) for the two different symplectic inductions, one
finds that the projection f: F = @’#0 — G/D maps the element g- 4, € @’#0
to [g], € G/D and that m o P, maps it to [g]; € G/E, and thus the
given diagram is commutative.

4. Pukanszky’s condition and localization of massless particles

We tackle here, in purely geometric terms, the question of localization
of massless relativistic particles in the light of our interpretation of Pukan-
szky’s condition.
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Let R*! = (R4, g) denote flat space-time whose metric g has the
Lorentz signature (— — —+). We also assume for convenience that R
is oriented and time oriented as well. The group G of interest to us
is the neutral component of the Poincaré group Isom(R3 ’1) , e, G =
0@, 1)0®R3’1 . We will denote by & = (A, T") a typical element of
g = o3, )® R*>'. Likewise, a point in g* is a pair 4 = (M, P)
with M € 0(3,1) and P € R®''—interpreted as the angular and linear
momentum respectively—where the pairing with g is given by {(u, ¢) =
—STr(MA) — g(P,T).

According to the point of view espoused in {19], the coadjoint orbit
é’#o representing the space of motions (or in other words, the classical
phase space) of a massless particle with helicity s € R\{0} is specified by
Ky = (M, F,) with

(4.1) *(M))P,=sP,, DetM,=0, and F, future-pointing,
where the star “x” denotes the standard Hodge anti-involution of the
Lorentz Lie algebra o(3, 1) identified with AR AZ(R3 ’ l)* by
(AANB)Y = g(B, VYA — g(4, V)B. We note that the conditions (4.1)
imply
(4.2) g(Fy, F))=0 and M FP,=0.

The coadjoint action of G on g* is given by

Coad (L, C)(M, P)= (LML™' + C A(LP), LP),

and an elementary (but tedious) computation shows that the istropy sub-
group is given by Gﬂ0 =~ SO(2) x R’.

As a next step, we consider the seven-dimensional (real) subalgebra

(4.3) 2= {(A,T) € g|]AP, = 0}.

Its main interest is that b = € is a real polarization. To prove this, we
first recall the fact that for A € 0(3, 1) the condition AP = 0 implies that
there exists ¥ € R>! such that A = *(V A P). Using this fact, one can
show that for &, & €0 there exists @ € R**! such that [A, A'] = PyAQ,
and hence

(o, [E, &N = — L Tr(M[A, A']) - g(P,, AT’ — A'T)
= - g(Q, MyP) € (AP,,T') — g(A'P,, T) =0

because of (4.2) and (4.3). As a notable feature, this polarization satisfies
Pukanszky’s condition. To see this, note first that, since b is real, we have



PUKANSZKY’S CONDITION AND SYMPLECTIC INDUCTION 345

¢ = 0, and, since G is connected, we have D = D;. Integrating the
subalgebra o yields the closed connected subgroup

D={(L, C)eG|LP,=PF,}.
With these ingredients we now compute

0 *
U+ ={(M, P) € g"| x(M - My)P, =0}
. * 3,1
={(M,F)eg [E\KCGR :M=M0+C/\PO}CD~ﬂO,

and thus y, +20 = D-u,.

We thus may apply Proposition 3.9 to conclude that é’uo is symplecto-
morphic to the (modified) cotangent bundle of the forward light-cone of
R

g, = T"% with € = G/D,

the projection n: G — % being given by P = =n((L, C)) = LP,. The
base manifold & = R3\{O} is physically interpreted as the space of linear
momentum and energy of the massless particle, whereas the typical fiber
of the phase space 7% = % x R’ may be identified with the configura-
tion space where our massless particle dwells. Such an identification thus
assigns to each point of the classical phase space of the massless parti-
cle a position in our three-dimensional space, i.e., it becomes “localized.”
However, we must emphasize that this localization procedure relies on a
specific noncanonical choice for the connection o on the principal bundle
G — G/D used to define the modified symplectic structure dd, T pr p
of T"% . The fact that there does not exist a preferred G-invariant con-
nection is due to the nonexistence of a reductive splitting g =0 ® s with
[v,5]Cs.

A stralghtforward calculation shows that to each future-pomtmg unit
vector I € R* , We can associate a connection o, = (A F) on G-~ %
by

(L™"dLP) A (L7'])

A=L"'dL- ,
g(I’LPO)
~ gI,C)-L™'dLP, - g(dLP,,C)- L'
F=rf dc- o1, LP)

These expressions all make sense because g(I/, LP;) > 0 for all L €
03, 1),
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More effort is needed to find out the modified symplectic structure on
T*% , which turns out to be given by

Vol(I, P) )

(4.4) w; =d(QdP) +s5-PT’ ( ST

where P € # and Pt denotes the projection 7°% — & . We have denoted
by Vol(/, P) the 2-form on & obtained by contracting the prescribed
volume form Vol of space-time with the vectors / and P. Note also
that we have interchanged the traditional roles of the symbols P and
Q: P denotes the coordinates in the base manifold and @ denotes the
coordinates into the fiber.

By using the g-orthogonal decomposition P = p + ||p||-I, with p €
Il\{O} = R3\{O} and ¢ € R’ (our three-dimensional space), i.e., in a
Lorentz frame adapted to the “observer” I, we get

_vol(p)
Ipll>

where vol stands for the canonical volume element of R®. Following a
completely different route, we thus recover the symplectic structure which
is derived in [19] by means of another localization procedure.

We finish this discussion by noting that any connection o will pro-
vide us with an identification of @“0 with T"°% equipped with a modi-

fied symplectic structure @, = dd; p+ pr 8. However, because of the

invariance of 1,4, € 2", there will exist a 1-form y on % such that
w,=w;+d (Pt w) . This implies that, modulo a redefinition of the canon-
ical 1-form of 7% —a “gauge transformation” which reveals the affine
structure of our three-dimensional space—the localization procedure we
have spelled out in terms of Pukanszky’s condition merely reduces to the
choice of an otherwise arbitrary observer I in space-time.

Remark 4.5. For completeness, we recall that the massless coadjoint
orbit with s = 0 corresponds to the choice of origin u, = (0, ), where
P, is null and future-pointing. In this case, the polarization is still given
by (4.3) and all previous results hold except that our localization is now
“canonical” since this orbit is symplectomorphic with 7°% endowed with
its canonical symplectic structure.

Remark 4.6. It is worth mentioning that the position observables we
have defined above do not Poisson-commute since for u#, v € R® we have:

w; =—d(qdp)—s

vol(p, u, v)

{q.u,q.'u}zs. 3
ol
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We can easily single out the prequantizable massless orbits ﬁﬂo as those
satisfying 2s € Z, and to these we can apply the geometric quantization
procedure using the previously introduced real polarization, which is (of
course) the vertical polarization of (77%, w,). In doing so, we can eas-
ily quantize the three position observables (they preserve the G-invariant
polarization) and end up with noncommuting position operators in the
case of nonzero helicity. In this way we recover results already known to
physicists (e.g., [2], [11]).

5. Appendix: Some notations and sign conventions

Notation 5.1. If a is any (real) vector space, we denote by a its
dual space. If a is a linear subspace of a vector space g, we denote the
canonical injection by 7, : a — g. Dual to the canonical injection we have
the projection 1 : g* — a*, and we denote by a® the annihilator of a in
g :a’ =ker(i)) = {u € g" VX € a: u(X) = 0}.

Sign convention 5.2. Let ® be a (left) action of a Lie group G on a
symplectic manifold (M, ), ie., ®: G — Diff(M) is a group homomor-
phism. For X € g (g the Lie algebra of &) we define the fundamental
vector field X,, on M as the vector field whose flow is ®(exp(X¢)). The
map X — X, so defined is a Lie algebra anti-homomorphism.

A momentum map (if it exists) isamap J: M — g* satisfying 1(X,,)®
+d(J*X) =0 forall X €g. It is called an equivariant momentum map
if it is equivariant for the given action of G on M and the coadjoint
action of G on g".
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ON THE LAPLACIAN AND THE GEOMETRY
OF HYPERBOLIC 3-MANIFOLDS

RICHARD D. CANARY

Abstract

Let N = H® /T be an infinite volume hyperbolic 3-manifold which is
homeomorphic to the interior of a compact manifold. Let Ay(N) =
infspec(—A) where A is the Laplacian acting on functions on N . We
prove that if N is not geometrically finite, then Ay(N) = 0, and if N
is geometrically finite we produce an upper bound for 4,(N) in terms of
the volume of the convex core. As a consequence we see that 4,(N) =0
if and only if N is not geometrically finite. We also show that if N has
a lower bound for its injectivity radius and is not geometrically finite,
then its limit set L has Hausdorff dimension 2.

1. Introduction

In this paper we will study the relationship between the geometry of
infinite volume hyperbolic 3-manifolds and the bottom Ao of the spectrum
of the Laplacian. We will also study the relationship between spectral
information and the measure-theoretic properties of the limit set. These
relationships have been studied extensively by Patterson (cf. [28], [27])
and Sullivan (cf. [32], [33]), and much of this paper may be regarded as
an extension of their work. Recall that a hyperbolic 3-manifold is said to
be topologically tame if it is homeomorphic to the interior of a compact
3-manifold. Our first result is:

Theorem A. Let N be an infinite volume, topologically tame hyperbolic
3-manifold. Then A,(N) =0 if N is not geometrically finite. Moreover,
there exists a constant K such that if N is geometrically finite, then
X (0 C(N))|
vol(C(N)) ’
where vol{C(N)) denotes the volume of N’s convex core.

Combining Theorem A with work of Lax and Phillips ([20], [21]) we
show that 1, detects whether or not a topologically tame hyperbolic 3-
manifold is geometrically finite.

A(N) < K

Received July 19, 1991. The author was partially supported by National Science Foun-
dation grant DMS 88-09085.
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“Corollary B. Let N be an infinite volume topologically tame hyperbolic
3-manifold. N is geometrically finite if and only if A,(N) #0.
In a forthcoming paper [5], Marc Burger and the author prove that there
exists a constant G > 0 such that if N is geometrically finite, then

G
W2 e

where vol(.#{(C(N))) denotes the volume of the neighborhood of radius
one of the convex core. (This result is analogous to results of Schoen
[29] and Dodziuk-Randol [13] for the closed and finite volume cases.)
Thus combining this result with Theorem A we see that the volume of the
convex core “controls” A,. Here is one intuitive explanation for such a
relationship. There always exists a positive harmonic function f such that
Af = —A,f - V(-log f) is a bounded vector field whose associated flow
is volume-increasing and the rate of increase at each point is at least 4.
Outside of the convex core the geometry is exponentially expanding, so it
is easy to construct volume-increasing flows with “large” rates of volume
increase. However, the convex core is more congested, and the thicker the
convex core is the more difficult it will be to construct flows with a “large”
rate of volume increase.

In [32], Sullivan proved that if N = H /T’ is a geometrically finite
hyperbolic 3-manifold, and D is the Hausdorff dimension of the limit set
of T', then Ay(N) =1 if D < 1, while otherwise A,(N) = D(2 - D).
Thus combining Theorem A with the above-mentioned result of Burger
and Canary makes explicit the intuitive relationship between the thickness
(volume) of the convex core and the fuzziness (Hausdorff dimension) of
the limit set. (The basis of this second intuitive link is that the convex
core is the quotient of the convex hull of the limit set by the group action.
It stands to reason that the limit set should be locally complicated if and
only if the convex core is thick.) Thus the bottom of the spectrum of the
Laplacian, the Hausdorff dimension of the limit set, and the volume of the
convex core all serve as measures of “how geometrically finite” N is.

By analogy one would conjecture that the limit set of a topologically
tame hyperbolic 3-manifold which is not geometrically finite had Hausdorff
dimension 2. We remark that it is shown in [8] that the limit set of a
topologically tame hyperbolic 3-manifold either has measure zero or is the
entire sphere at infinity. In this paper we prove the following result.

Theorem C. Let N = H3/1" be a topologically tame hyperbolic 3-
manifold with a lower bound on its injectivity radius. If N is not geomet-
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rically finite, then the limit set L. for I'’s action on the sphere at infinity
has Hausdorff dimension 2.

Theorem A and Corollary B hold for analytically tame hyperbolic 3-
manifolds, and Theorem C may be extended to analytically tame hyper-
bolic 3-manifolds with thin parts of uniformly bounded type (see §2 for
definitions). The results will be stated and proved in this generality in the
text.

In §2 we will review the structure of hyperbolic 3-manifolds. In §3 we
will reprove an upper bound on 4, due to Buser and also derive a prelim-
inary result about the growth of harmonic functions on analytically tame
hyperbolic 3-manifolds. In §4, we will use Buser’s upper bound to derive
Theorem A and Corollary B and some other consequences of Theorem A
concerning the critical exponent of the Poincaré series and the bottom of
the essential spectrum. In §5 we will prove Theorem C, by showing that
the harmonic function given by Patterson-Sullivan measure has subexpo-
nential growth.

2. The structure of hyperbolic 3-manifolds

Let N be a (orientable) hyperbolic 3-manifold with finitely generated
fundamental group. N may be represented as the quotient of hyperbolic
3-space H by a group I' of orientation-preserving isometries of H®. We
recall that the /imit set L. of T is defined to be the smallest closed I-
invariant subset of the sphere at infinity Sjo for hyperbolic 3-space. We
will say that N is elementary if T is abelian. If N is nonelementary,
the convex core C(N) of N 1is defined to be the smallest convex subman-
ifold such that the inclusion map is a homotopy equivalence. Explicitly,
C(N) = CH(L)/T, where CH(L) denotes the convex hull (in H3) of
the limit set L. (See Maskit [24] for basic definitions in the theory of
Kleinian groups.) The following structural theorem is central to under-
standing hyperbolic 3-manifolds and Kleinian groups.

Theorem 2.1 (Ahlfors’ finiteness theorem [1]). Let N be a nonelemen-
tary hyperbolic 3-manifold with finitely generated fundamental group. The
boundary 8C(N) of the convex core C(N) is a finite area hyperbolic sur-
face, i.e., there exists a C°-isometric embedding of a finite area hyperbolic
surface into N with image 8C(N).

This statement combines Ahlfors’ finiteness theorem [1] with Thurston’s
observation that the boundary of the convex core is a hyperbolic surface
(see Epstein-Marden [17] or Thurston [34]). Thus, in particular, dC(N)
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has area 2n|x(8C(N))|. If C(N) has finite volume or N is elementary,
then N is said to be geometrically finite. (If N is elementary we will
say that vol(C(N)) = 0.) Recall that N is topologically tame if it is
geometrically finite (see, e.g., Marden [23]). We will say that N is convex
cocompact if C(N) is compact (i.e., if N is geometrically finite and has
no cusps).

We will say that a hyperbolic 3-manifold N with finitely generated
fundamental group is analytically tame if C(N) may be exhausted by a
sequence of compact submanifolds {C,} such that C, c C ; if i <j,

UC? = C(N) (where C? is the interior of C; considered as a subset
of C(N)), and there exist K and L such that the boundary 9C,; of
C, has area at most K and the neighborhood of radius one of 6C; has
volume at most L for all i. We only require that our submanifolds C;
have Lipschitz boundary. This regularity assumption is natural, as the
boundary of the convex core itself is always a Lipschitz submanifold but
is not in general a C'-submanifold (see Epstein-Marden [17]).

In [8] the following theorem is proved.

Theorem 2.2 [8]. If N is a topologically tame hyperbolic 3-manifold,
then N is analytically tame.

In the same paper [8] the following generalization of a result of Thurston
[34] is established.

Theorem 2.3. If N is analytically tame hyperbolic 3-manifold, then
either Ly = SZO or L. has measure zero. Moreover, if L. = Sfo , then T'
acts ergodically on Sfo .

Work of Bonahon guarantees that there is a large class of hyperbolic
3-manifolds which are topologically tame. (This ordering is historically
misleading—Theorem 2.4 was actually used to prove Theorem 2.2; see
the remarks at the end of the section for a further discussion.) Let I'
be a discrete subgroup of the group of isometries of hyperbolic 3-space.
A finitely generated group I' of hyperbolic isometries is said to satisfy
condition (B) if it is not cyclic, and whenever I' = G * H is a nontrivial
free decomposition of I'" there exists a parabolic element y which is not
conjugate to any element of G or H. In particular, condition (B) is
satisfied if I" is freely indecomposable.

Theorem 2.4 (Bonahon [3]). If N = H’ /T is a hyperbolic 3-manifold
and T satisfies condition (B), then N is topologically tame.

It will be necessary in the proof of Theorem C to make use of the
thick-thin decomposition of a hyperbolic 3-manifold. We recall that the
injectivity radius of N at a point x, denoted inj(x), is defined to be
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half the length of the shortest (homotopically nontrivial) loop through
X . There exists a constant .# , called the Margulis constant, such that if
e <. # and

Niningey = {X € N[ inj(x) < &},
then every component of Nthin(s) is either

(a) a torus cusp, i.e., a horoball in H® modulo a parabolic action of
ZaoZ,

(b) a rank one cusp,i.e., a horoball in H® modulo a parabolic action of
Z, or

(c) a solid torus neighborhood of a geodesic
(see Thurston [34] or Morgan [25]). We also define

Nnick(ey = {X € V| inj(x) > e}.

We further remark that if & is chosen to be less than the Margulis constant,
that there exists an L > 0 (depending only on &) such that if ¢ is any
geodesic in N, then the distance (in ¢) between any two components of
on Nthin(e) is at least L. (When reading about hyperbolic 3-manifolds it
is often easier, on a first reading, to assume that there are no parabolics
or even that there is a uniform lower bound on injectivity radius. This
caution applies equally well to this paper, especially the proof of Theorem
C)

We furthermore say that N has thin parts of uniformly bounded type if
there exists J such that if S is any component of aNthin(e)nC (N),then S
has diameter less than J.. In particular, if N contains any rank-one cusps,
then their intersections with the convex core have finite volume; such rank-
one cusps are said to be bounded or doubly cusped in the language of
Kleinian groups.

Remarks. (1) Actually Bonahon [3] proved that hyperbolic 3-manifolds
satisfying condition (B) are geometrically tame. The main theorem of [8]
uses this theorem to prove that hyperbolic 3-manifolds are topologically
tame if and only if they are geometricaily tame. Analytic tameness is a
consequence of geometric tameness. We have developed the structure in
this way to avoid introducing simplicial hyperbolic surfaces and the more
technical points in the definition of geometric tameness, none of which
is necessary for the work in this paper. We urge the reader to consult
Bonahon [3], Thurston {34], or Canary [8] for a discussion of geometric
tameness. :

(2) It is conjectured that all hyperbolic 3-manifolds with finitely gener-
ated fundamental groups are topologically tame, and hence both geometri-
cally and analytically tame. However, there are hyperbolic 3-manifolds
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which are known to be analytically tame but which are not known to
be topologically tame. In particular, Culler and Shalen [12] proved that
there is a dense G; of analytically tame manifolds in the boundary of the
Schottky space of genus 2. ;

(3) Condition (B) is really a topological condition. Let Nf be obtained
from N by removing the noncompact components of Nthin(e). There

exists a compact submanifold C of Neo such that the inclusion map is a
homotopy equivalence and C intersects each component of the boundary
in either an annulus or a torus (see Feighn-McCullough [18]). T satisfies
condition (B) if every compressible curve on the boundary 8C of C
intersects the boundary of a noncompact component of Nthin( 0 (A curve
in 8C is said to be compressible if it is homotopically trivial in C, but
notin 8C.)

3. Buser’s upper bound for 4,

Let N be a complete Riemannian n-manifold (without boundary). We
recall some equivalent definitions of Ao(N) (in this paper the Laplacian
Af = div(grad f) is a negative definite operator):

Ao(N) =sup{i|3f € C(N) s.t. Af = —Af and f > 0}

2
— ot (fNini)
recEm \ [y f?

= infspec(—A).

We also recall that the Cheeger constant A(N) is defined to be the infi-
mum, over all compact n-submanifolds 4 of N (with Lipschitz bound-
ary), of vol, ,(84)/vol(A). Buser [6] proved that if N has Ricci curva-
ture bounded from below, then A(N) gives an upper bound for Ay(N).
(In Cheeger’s original paper [9] he proved that the Cheeger constant gives
a lower bound on 4, with no constraints on the geometry of the manifold,
to be precise A,(N) > A(N )2 /4.) We give a new proof of this upper bound
which also yields a L*-bound on the growth rate of harmonic functions
on analytically tame hyperbolic 3-manifolds.

Theorem 3.1 (Buser [6]). If the Ricci curvature of a complete Rieman-
nian n-manifold N (without boundary) is bounded below by —(n — l)xz,
then

4o(N) < Rch(N),

where R depends only on n.
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Proof of 3.1. We may assume, by scaling the metric, that ¥ = 1. Then
Cheng’s comparison principle [10] assures us that A,(N) < (n— 1)2 /4. Let
S be a positive eigenfunction of the Laplacian with eigenvalue —4, (see
either Cheng-Yau [11] or Sullivan [38] for a proof that f exists). Now
the infinitesimal Harnack inequality of Yau [36] implies that |Zf£(x)| <R
for some R depending onlyon n and all x ¢ N.

Now consider log f- Vlog f =V f/f and

2
Alog f = —Ay— l_% < —4g-

Let 4 be a compact n-submanifold of N . Then by Stokes’ theorem,

/A(—logf): —v—f-fl.
4 oa [f
But
/ A(—log f) > Ay vol(4)
4
and
/ Y i< Rvol_ (2.4),
oa [J
%0 1L (94)
vol,_,
“Vol(a) =

which completes the proof. gq.e.d.

When N is analytically tame and % is a positive harmonic function,
the same argument applies to prove:

Proposition 3.2. If N is an analytically tame hyperbolic 3-manifold
and h is a positive harmonic function on N, then

[ |5 ’
C(N)

A < 0.

Proof of 3.2. Let C; be a sequence of compact submanifolds exhaust-
ing C(N) such that §C; has area less than K. Then

2
/CA(_logh)z/C VT}’ =/ac _%ﬁ.ﬁgarea(a(q))R.
Therefore, R
/ V—h < KR < o0.
el h

Remark. It is a consequence of Theorem 1.2 in Li-Yau [22] that if
u(x, t) is any positive solution of the heat equation (A— %)u(x ,1)=0 on
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N x(0, oc), where N is a complete noncompact Riemannian n-manifold
without boundary whose Ricci curvature is bounded below by —(n — 1),

then
2

IVul*  au, - na’(n—1) | ne’
u2 u - \/f(a - 1) 2t

forall « > 1. If f is a positive eigenfunction of the Laplacian with

eigenvalue —4 on N, then u(x,t) = e M f {(x) is a positive solution of

the heat equation. Applying the above inequality to # and letting a = 2

and ¢ go to oc, we obtain

2
'5121 <2V2n(n-1)—2a.
f

Therefore in our proof of Buser’s theorem we may take R to be

\/2\/§n(n —1). This appears to improve on the constant obtained in
Buser’s original paper [6].

4. Proofs of Theorem A and Corollary B

Theorem A. Let N be an infinite volume, analytically tame hyperbolic
3-manifold. Then A,(N) = 0 if N is not geometrically finite. Moreover,
there exists K > O such that if N is geometrically finite, then

X(OC@IV))|
Ao(N) < KZ0e ) -

Proof of Theorem A. We first suppose that C(N) has infinite volume
(i.e., that N is not geometrically finite). Let {C;} be a collection of
compact submanifolds exhausting C(N) such that area(9C;) < K for
some K. In this case, lim,  _ vol(C;) = oo, s0 h(N) = 0. Therefore,
applying Buser’s Theorem 3.1, we see that 4 (N Y=

If N is geometrically finite, let C, = C(N) O N pickie . Since C(N) N
Nﬂmk( 5 is compact, N, thin(e) has only ﬁmtely many components so there
exists &, > 0 such that if & < ¢; then all the components of N, thm are
noncompact. Let 7" be a noncompact component of N, hin(e) * If T 1s a

torus cusp, then it is isometric to T? x [c, oo) with the metric

ds?s +dt?
dS2 = T2 2 9
t

where dsiz is a Euclidean metric on T? and ¢ > 0. If T is a rank-one
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cusp, then TN C(N) is isometric to 4 x [c, co) with metric

ds* +dt*
ds’ = =4~ 5>
t
where dsj is an Euclidean metric on the annulus 4 and ¢ > 0. If ¢ < &y >

then 8C, — C(N) = 8Ny, N C(N), 50

e\ 2
area(0C, — 9C(N)) = (8—-) area(0C, —9C(N)),
0 0

which implies

limarea(9C,) = area(9 C(N)) = 2x| x(8C(N))|,

&—0
while
lim vol(C,) = vol(C(N)).

&e—0
Therefore,
ny) < ZH2EC))
= vol(C(N))
and one may again use Theorem 3.1 to complete the argument. g.e.d.

In a series of papers Lax and Phillips ([20], [21]) have studied the spec-
trum of the Laplacian on finite volume geometrically finite hyperbolic
manifolds. In particular, they proved that A, # 0. (One may also see
that A; # 0 for geometrically finite hyperbolic 3-manifolds using the tech-
niques of Patterson and Sullivan; see, for example, [32], [33].) We state a
portion of their results.

Theorem 4.1 (Lax and Phillips). Let N be an infinite volume geomet-
rically finite hyperbolic 3-manifold. The intersection of spec(—A) with the
interval [0, 1) consists entirely of a finite number of point eigenvalues (of
finite multiplicity) all lying in (0, 1), and there are no point eigenvalues
in [1, 00). Moreover, the spectrum is absolutely continuous and of infinite
uniform multiplicity in [1, o).

We combine this with Theorem A to obtain:

Corollary B. Let N be an infinite volume analytically tame hyperbolic
3-manifold. Then Ay(N) =0 ifand only if N is not geometrically finite.

We recall that the critical exponent of the Poincaré series of a Kleinian
group I is defined to be

5=inf{s

Ze—sd(O,y(O)) < oo}.

yel
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This critical exponent is closely related to 4, . In fact (see Sullivan [33]),
if A, =1 then 6 <1, otherwise > 1 and A, = 6(2 —J). Therefore
Theorem A implies:

Corollary 4.2. If N = H /T is analytically tame but not geometrically
finite, then the critical exponent of its Poincaré series is 2. Moreover, if N
is geometrically finite and A,(N) # 1, then

K| x(0C(N))|
022-—ICN)

Let n, denote the number of elements y of I' such that y(0) is con-
tained in the ball of (hyperbolic) radius k& about 0. Then
logn,

A
If N is further convex cocompact, then there exist constants a and A4
such that ae®’ < n, < A (see Sullivan [30]). So we can interpret
Corollary 4.2 as an asymptotic estimate on the number of lattice points in
the ball of radius k in terms of the volume of the convex core.

We recall that the discrete spectrum of N is defined to be the isolated
points in spec{—A) which correspond to eigenvalues of finite multiplicity.
The essential spectrum of N is the complement of the discrete spectrum
in spec(—A). (See Donnelly [14] for a discussion of the essential spec-
trum.) One direct consequence of Lax and Phillips’ result is that the bot-
tom Ag°(N) of the essential spectrum is 1, whenever N is geometrically
finite. As a consequence of Theorem A we obtain:

Corollary 4.3. If N is analytically tame, but not geometrically finite,
then ASSS(N) =0.

Proofof4.3. Theorem A assures us that 0 € spec(—A) . Butit is a result
of Yau [37] that there are no (nonzero) harmonic functions in L2(N ) when
N is a complete infinite volume Riemannian manifold. Therefore 0 is in
the essential spectrum. q.e.d.

Another consequence of Theorem A and Lax and Phillips’ result is:

Corollary 4.4. If N is geometrically finite and

1
Vol (C(N)) > sy @ea”

then N has nonempty point spectrum.
Remarks. (1) If N is a geometrically finite hyperbolic 3-manifold,
then there exists a positive eigenfunction f such that Af = —4,f and

(1=
0=, (Ix—élz) -

J = lim sup
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where 1 <d < 2, and v is a probability measure on the sphere at infinity
for the Poincaré ball model for H’ (see Sullivan [30], Patterson [28],
or Nicholls [26]). In particular, |Vf/f| < 2. Therefore, returning to the
proof of Buser’s theorem, we see that 1,(N) < 2A(N), so that the constant
K in Theorem A may be taken to be 4z . Notice that the topological term
|x(@C(N))| is necessary in the statement of Theorem A, since when one
passes to a finite cover of a geometrically finite hyperbolic 3-manifold 4,
remains the same.

(2) In [31] Sullivan proves that 4,(N) = 0 when N is a “hyperbolic
half-cylinder” (see remark (1) at the end of §5 for the definition of a
hyperbolic half-cylinder and a discussion of Sullivan’s work). Let M be
a hyperbolic 3-manifold which fibers over the circle. C. L. Epstein [16]
proved that A, (N) = 4;°(N) = 0 if N is the cover of M associated to
the fiber subgroup. In both cases the manifolds involved are known to be
topologically tame.

(3) In [15] Doyle shows that there exists ¥ > O such that if I" is a
classical Schottky group, then 4,(N) > Y, where N = 5 /I". Therefore,
Theorem A implies that vol(C(N)) < K(2g —2)/Y , where g is the genus
of the classical Schottky group. We can interpret this as a quantitative
version of the fact (see Jorgensen-Marden-Maskit [19]) that all algebraic
limits of classical Schottky groups are geometrically finite. Recall that T’
is a classical Schottky group of genus g if there exist g mutually disjoint
pairs of circles in the sphere at infinity such that I" is generated by a set of
g Mobius transformations each of which takes the interior of a circle to
the exterior of its partner circle. In this case, the neighborhood of radius
1 of C(N) is a handlebody of genus g.

(4) If N is convex cocompact and 4,(N) = 1, then I is either a Schot-
tky group (i.e., the neighborhood of radius 1 of C(N) is a handlebody)
or a Fuchsian group (i.e., C(N) is a totally geodesic surface) (see Sullivan
[30] or Braam [4]). Presumably, the case with cusps is equally restrictive.

5. The Hausdorff dimension of the limit set

In this section we prove that the limit sets of geometrically infinite, ana-
lytically tame hyperbolic 3-manifolds with thin parts of uniformly bounded
type have Hausdorff dimension 2. If the limit set is not all of S? , then
such limit sets provide naturally arising examples of sets with measure
zero but Hausdorff dimension 2. This phenomenon was first studied by
Sullivan [31], who proved this result for “hyperbolic half-cylinders” (see
the remarks at the end of the section for a discussion of Sullivan’s work).
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TheoremC. If N = H? /T is an analytically tame hyperbolic 3-manifold
with thin parts of uniformly bounded type which is not geometrically finite,
then its limit set Ly has Hausdorff dimension 2.

Proof of Theorem C. The first step in the Patterson-Sullivan program
is the construction of a probability measure u on Szo (called Patterson-
Sullivan measure) supported on the limit set such that

) u(¥(E)) = /E '’ du,

where ¢ is the critical exponent of the Poincaré series, £ is any Borel
subset of the sphere, and y is any element of I'. (All calculations are
done in the Poincaré ball model for hyperbolic 3-space.) We also recall
that if v is any probability measure on Sfo and d € [0, 2], then we may
define a function ¢, 4 on H?, where

6, (%) = /S|a|dv

oo

a, being a hyperbolic isometry taking x to 0. Explicitly,

) 1 - |x)?

@O =

b, .4 is then a positive eigenfunction of the Laplacian with eigenvalue
d(d —2). When u is the Patterson-Sullivan measure on L and d =4,
condition (x) guarantees that ¢# s 1s equivariant with respect to I". Re-
call from Corollary 4.2 that in our case d = 2, so ¢ 2 descends to a
positive harmonic function on N . See Sullivan [30] [32] Patterson [28],
or Nicholls [26] for a discussion of Patterson-Sullivan measure.

Our proof depends on the following result of Sullivan (see Theorem
2.15 of [33] or [31]) whose proof we will review. Recall that if ¢ is a
function on H> , we define its exponential growth rate to be

<10g(maX{¢(X) |x € BR(O)})>
R .

If e(¢) <0, then ¢ is said to have subexponential growth.
Proposition 5.1 (Sullivan). Let v be a probability measure on Szo , and
d(x) = [ |a;|2 dv . If ¢ has subexponential growth, then the support of

v has Hausdorff dimension 2.

Proof of 5.1. If & € Sfo , let v(&, r) denote the v-mass of a disk
B(&, r) of (spherical) radius r about ¢. Given ¢ > 0 choose T'(¢) such
that if d(0, x) > T(e) then ¢(x) < /.

e(¢) = limsup

R—oo
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Lemma 5.2. There exists C > 0 such that if r < e T® and e S:o ,
then v(&,r) < Cre.

Proof of 5.2. Let o(£) denote the geodesic ray from 0 to &, and let
p(&, r) denote the point along this ray at a distance of —log(r) away from
the origin. Then p(&, r) = (1 = r)/(1 + )¢, so

2r
€-pE Nl =5 <2n
If fe B(&, r), then l£~p(é, r)| < 3r. Moreover
2 4r
1—1|p, r)l =0T

IféeB (&, r) and a, is a hyperbolic isometry taking p(¢, r) to 0, then
' 2 4r 1

a (&)>——m > —

o, (] 2 9r*(1+r)2 ~ 9r

since r < 1. Therefore,

(p(E, 1) > /B@ AL #u@, n,

which implies
v(&, 1) < 81P79(p(E, r)) < 817%™ = 81" qed.

If {B(&, r;)} is a covering of the support of v by a countable collection
of balls of radius r; < e~ T® centered at ¢;, then

1<y e, sy cr,

which shows that supp(v) has positive (2—¢)-dimensional Hausdorff mea-
sure. In particular, the Hausdorff dimension of supp(v) is at least 2 —¢.
But since this holds for all ¢ > 0, supp(v) has Hausdorff dimension 2,
and hence Proposition 5.1 is proved.

The proof of Theorem C is then completed by the following proposition.

Proposition 5.3. Let N be an analytically tame hyperbolic 3-manifold
with thin parts of uniformly bounded type which is not geometrically finite,
and p its associated Patterson-Sullivan measure. Then ¢ 0.2 has subexpo-
nential growth.

Proof of 5.3. Throughout this proof we will fix a value of ¢ >0 which
is less than the Margulis constant. For convenience we will assume that
0eC(N)N Nthick(s) ,and ¢ will serve as shorthand for ¢#,2 .

We will need the following easy consequence of elliptic theory:



362 RICHARD D. CANARY

Lemma 5.4. Given any 6 > 0 and ¢ > 0, there exists A > 0 with the
Jollowing property. If M is any complete hyperbolic 3-manifold,
X €M, , and h is any positive harmonic function on M such that

thick(e
'/Be/z (x)

|Gk (x )|26 then
Proof of 5.4. Since x € Mthlck we may assume that M = H® and

x = 0. Suppose that the lemma is false. Then there exists a sequence u,

2
VAaI"S 4

of positive harmonic functions on H’ such that u,(0)=1,

v
”"(0)‘25, and /
u, B,,(0)

The Harnack inequality [36] assures us that ]—a( )] < R forsome R >0,

all n,andall x € H’, so that u,(x) < e®40:%) forall x € H®. Therefore,
by elliptic theory (see Aubin [2] for example), there exists a subsequence
{u ].} which converges in the C 1-topology to a positive harmonic function
u . But this would imply that

2
Vu,

u,

1
<-—.
n

2

Vu o,

u(O)‘>6 and /

5/2 0) u

which contradicts the fact that » is C*, and completes the proof of
Lemma 5.4. q.e.d.
We now recall, from Proposition 3.2, that

-/C(N) 2

Thus |Y¢—?(x)| goes to 0 uniformly on C(N )mNthlck( &) ie., given 6 > 0,

there exists a compact submanifold Y; of C(N)nN ]Vthlck( such that
|V—¢?(x)|§5 on (C(N)ﬁNthwk(g )—Y;. Let M; denote max{¢(x)|x€Y,}.
Let L > O be such that if ¢ 1s any geodesic in N, then the distance (mea-

sured in o) between components of N0 Nypine &) isatleast L. Let J >0 be

a uniform bound on the diameter of each component of 9N, thin(e) 1 C (V) .

Lemma 5.5. If x € C(N)N Ninick(e) , then

< 0.

$(x) < (M(,e‘”)ecl&d(o’x)

>

where C, =14+ J/L.
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Proof of 5.5. Let x € C(N)N Nthlck > and let ¢ be a path joining 0
to x and lying entirely in C(N)N Nthlck . We may integrate ¢, over the
portion of ¢ which does not liein Y, to obtain

$(x) < Me™®

where /(g) denotes the length of ¢. Now let ¢’ be the shortest geodesic
joiningO to x ; notice that ¢’ lies entirely in C(N) and /(¢) = d(0, x).

Now ¢ 1ntersects at most 1 + d(0, x)/L components of N, thin(e) -+ YVC
may replace each component of ¢’ N Ny n(e) by a path lying entirely in
BNthm @ " C(N) of length of most J to form a new path & joining O to

X, lying entirely in C(N) N Nthmk ©> and having length at most

d(0, x)
L

(Notice that the new path & need not be homotopic to the original path.)
Therefore,

d(O,x)+(1+ )JzCld(O,x)+J.

¢(x) < Méeél(é) < MéeCléd(o,x)_H;J

>

proving Lemma 5.5. q.e.d.

Let R: N — C(N) denote the nearest point retraction, i.e., R(x) is the
nearest point of C(N) to x (see Canary-Epstein-Green [7] or Epstein-
Marden [17] for a discussion).

Lemma 5.6. If R: N — C(N) is the nearest point retraction and 0 €
C(N), then d(0, R(x)) <d(0, x) and ¢(x) < $(R(x)) forall x e N.

Proof of 5.6. We may assume that x € N—C(N). Let P be the totally
geodesic hyperplane which passes through R(x) and is perpendicular to
the geodesic segment xR(x)) through x and R(x). Notice that C(N)
lies entirely on one side of P (see Epstein-Marden [17]). The geodesic
segment OR(x) lies entirely within C(N) and thus makes an obtuse angle
with the geodesic segment xR(x). Therefore by considering the geodesic
triangle with vertices 0, x, and R(x) we see that d(0, R(x)) <d(0, x).

We will now see that |a; &) < Ia;(x) (&)] for all & € L., which clearly
implies that ¢(R(x)) > ¢(x). If £ € L., then the geodesic half ray R(x)¢
lies entirely in C(N) and is perpendicular to the horoball

2 2
He Ifl—W|:1—m@N}
{ye poel RGP

based at ¢ and passing through R(x). Therefore, since R(x)é makes an
obtuse angle with xR(x), we have
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1—|xl’ _ 1-|R@)
e — & T |R(x) ¢
which completes the proof of Lemma 5.6. qg.e.d.

We now deal with compact components of Nthin(g) .

Lemma 5.7. If T is any compact component of Nthin(g) and x e T,
then

| (&)] = = Jog (O]

#(x) < (MJeJ(C1J+J))€C’6d(O’x).

Proof of 5.7. Let S be the boundary of 7. The maximum principle
(cf. Aubin [2]) implies that the maximum of ¢ over T occurs at a point
X on §. Lemma 5.6 shows that £ € SN C(N) (since if y € T, then
R(y) € T). Consider &, the shortest geodesic joining 0 to x . Notice that
& lies entirely within C(N), and let y be the first point of intersection of
& with T. Since y is within J of X, we have d(0,X) <d(0,x)+J.
We may then apply Lemma 5.5 to see that

$(x) < B(%) < (MaeJJ)eCltSd(O,xHClJ(S _ (Maed(ClJ+J))eCl¢5d(0,x)’
proving Lemma 5.7. q.e.d.

We now need only deal with noncompact portions of Nthin(g) . In §2 of
[32] Sullivan establishes that the eigenfunction corresponding to Patterson-
Sullivan measure behaves roughly like 27940 %) o torus cusps and like
179409 on rank-one cusps of bounded type (see also Patterson [27]).
To both be precise and avoid introducing the construction of the Patterson-
Sullivan measure we will use an explicit version of Sullivan’s result, which
is obtained in the proof of Theorem 3.5.9 in Nicholls [26].

If M is any complete hyperbolic 3-manifold and 7T is any noncom-
pact component of Mthin(c) having boundary S, then there exists a map
F,: T — S which takes a point x € T to the nearest point on §. (If
I' , is a group of parabolic elements preserving oo in the upper half-
space model for H® and T is isometric to {(z, )t > 1}/T_, then
F(z,t)=(z,1).)

Lemma 5.8. Let M be a complete hyperbolic 3-manifold, v its associ-
ated Patterson-Sullivan measure, and T a bounded cusp of rank k. Then
given any point y in the boundary S of T and any a > 0 there exists D
such that if p € FT_I(y) then

¢ (p) < De(k+a_5)d(P:Y)
v,8 — ’

where & is the critical exponent of the Poincaré series.
We then improve this slightly to obtain:
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Lemma 5.9. If T is any noncompact component of N, then given any
a >0 there exists B(T, ) such that if x € TN C(N), then

¢(x) < B(T, a)e”¥®).
Proof of 59. Pick y € SN C(N), and let D be such that if
p € F;'(), then ¢(p) < De®®P) | If x € T n C(N), then there
exists a point X € F 1(y) such that d(%, x) < J. Now notice that

d(%,y) < d(0, x) + 27, therefore ¢(%) < De* @@+ But, since
|V7fb(y)| <R forall ye N and d(%,x)< J,

$(x) SeRJ $(%) < DeRJ+2aJead(0,x)’

from which we obtain the assertion in Lemma 5.9. q.e.d.

(Notice that this is the only point at which we have used the construction
of Patterson-Sullivan measure; if N has no cusps, then the proof applies
when u is any measure supported on the limit set satisfying condition
(+).)

Let B(C,9) denote the maximum of B(T', C,J) taken over the (finitely
many) noncompact components of Nthin( o Recall from Lemma 5.6 that
¢(x) < ¢(R(x)), and from Lemma 5.2 that d(0, x) < d(0, R(x)). Thus,
by combining Lemmas 5.5, 5.7, and 5.9 we see that

$(x) < $(R(x)) < (Mze" 7 4 B(C,6))e? Y

for all points x € N. Therefore, e(¢) < C,d, but since this is true for all
0 >0, e(¢) <0. This completes the proof of Proposition 5.3 and hence
of Theorem C.

Remarks. (1) Let N be a hyperbolic 3-manifold homeomorphic to
S x R whose convex core is homeomorphic to S x [0, co) and which has
a uniform lower bound on its injectivity radius. N is said to be a “hyper-
bolic half-cylinder” if there exists an embedded surface S , homotopic to
S x {0}, such that if p(x) denotes the distance from x to S, there exists
K such that given any 7 there exists d € [n, n+ 1] such that the portion
of p~'(d ) contained in the convex core has diameter less than K. With
these assumptions, Sullivan proves that ¢ has linear growth on the convex
core, and that Patterson-Sullivan measure is ergodic, hence unique.

(2) Examples of topologically tame hyperbolic 3-manifolds which are
not geometrically finite but do have a lower bound on their injectivity
radius may be given by using the techniques of Thurston [35] or Jor-
genson. The space QF(S) of geometrically finite hyperbolic structures
without cusps on S x R is parametrized by .7 (S) x 7 (S), where 7 (S)
denotes the space of marked hyperbolic structures on the closed surface
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S of genus g > 2. If (o, 1) is any point in QF(S), and ¢ is any
pseudo-Anosov homeomorphism of S, then the sequence of hyperbolic
manifolds (o, ¢"(r)) converges, both geometrically and algebraically (at
least up to subsequence), to a topologically tame hyperbolic 3-manifold
with a lower bound on its injectivity radius. These examples have limit
sets of measure zero. (Recall that a homeomorphism ¢: S — S is said to
be pseudo-Anosov if it is not homotopic to a finite order homeomorphism
and no finite collection of disjoint simple closed curves on S is preserved
up to isotopy by ¢.) This construction provides a (6g — 6)-dimensional
space of hyperbolic 3-manifolds with a lower bound on there injectivity
radius, however one still expects such examples to be rare in the boundary

of QF(S).
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